QUIZEN -Quadrilateral(9M08)

Learning Level 1
Q - Remembering (knowledge-based
questions)
U - Understanding
(comprehension-based questions)

Learning Level 2
I - Applying (application-based questions)
Z - Analyzing (analysis-based questions)

Learning Level 3
E-Evaluating (evaluation-based questions)
N-Creating (creation-based
questions)

Learning Level 1

1. Define a quadrilateral.
2. Name any two types of quadrilaterals.
3. What is a parallelogram?
4. State the opposite sides of a parallelogram.
5. What is the sum of all angles of a quadrilateral?

Learning Level 2

6. $A B C D$ is a parallelogram in which $A B=12 \mathrm{~cm}$ and $A D=8 \mathrm{~cm}$. If its altitude corresponding to side $A D$ is 6 cm , find the length of $B C$.
7. $P Q R S$ is a quadrilateral in which $P Q \| R S, P Q=5 \mathrm{~cm}, P S=8 \mathrm{~cm}$, and $S R=7 \mathrm{~cm}$. If $P R=10$ cm , find QR.
8. In a quadrilateral $A B C D, A B=B C=C D$ and $A D$ is perpendicular to $B C$. If $A B=6 \mathrm{~cm}$ and $A D$ $=8 \mathrm{~cm}$, find the area of the quadrilateral.
9. Prove that the opposite sides of a parallelogram are equal.
10.If $A B C D$ is a parallelogram, then prove that its diagonals bisect each other.

Learning Level 1

11. Construct a quadrilateral $A B C D$ in which $A B=5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}, C D=7 \mathrm{~cm}, \mathrm{AD}=8 \mathrm{~cm}$, and $B D$ is perpendicular to $A C$.
12.In a parallelogram $A B C D$, the bisectors of angles A and C intersect at O. Prove that O is the midpoint of $B D$.
12. The opposite sides of a parallelogram $A B C D$ intersect at O. Prove that $A O=C O$ and $B O=$ DO.
13. $A B C D$ is a parallelogram in which $A B=5 \mathrm{~cm}$ and $A D=8 \mathrm{~cm}$. E is a point on $A B$ such that $A E=2 \mathrm{~cm} . F$ is a point on $A D$ such that $D F=3 \mathrm{~cm}$. Find the area of the quadrilateral ABFE.
14. In a parallelogram $A B C D, E$ and F are midpoints of sides $A B$ and $B C$, respectively. Prove that $E F$ is parallel to $A D$ and $E F=(1 / 2) A D$.
