QUIZEN - Polynomial(9M02)

Learning Level 1
Q - Remembering (knowledge-based
questions)
U - Understanding
(comprehension-based questions)
Learning Level 2
I - Applying (application-based
questions)
Z - Analyzing (analysis-based
questions)

Learning Level 3
E-Evaluating (evaluation-based questions)
N - Creating (creation-based questions)

Learning Level 1

1. State the Remainder Theorem for a polynomial function $\mathrm{f}(\mathrm{x})$.
2. Define the Factor Theorem for a polynomial function $f(x)$.
3. What is the degree of a polynomial function?
4. Can a polynomial function have more than one factorization? True or False?
5. How do you find the remainder when a polynomial function $f(x)$ is divided by a linear factor $(x-a)$?

Learning Level 2

6. Find the remainder when $x^{\wedge} 3+2 x^{\wedge} 2-5 x+7$ is divided by $x-2$.
7. Use the Factor Theorem to determine whether $(x+1)$ is a factor of $x^{\wedge} 3+2 x^{\wedge} 2-3 x-2$.
8. Find a polynomial function of degree 3 with leading coefficient 2 , such that $(x-1)$ is a factor, and the remainder when $f(x)$ is divided by $(x-3)$ is -5 .
9. If $f(x)=2 x^{\wedge} 3-x^{\wedge} 2-7 x+5$, find $f(2)$ and $f(-1)$.
10. Using the Factor Theorem, factorize $x^{\wedge} 3-7 x^{\wedge} 2+16 x-12$ completely.

Learning Level 3

11. Prove that if $(x-a)$ is a factor of a polynomial function $f(x)$, then $f(a)=0$.
12.If the polynomial function $f(x)$ is such that $f(2)=5$ and $f(3)=11$, find the remainder when $f(x)$ is divided by $(x-2)(x-3)$.
13.If a polynomial function $f(x)$ has degree 4 and leading coefficient 1 , and if $f(1)=f(3)=0$, $f(2)=9$, and $f(4)=65$, find $f(x)$ completely.
12. If $f(x)$ is a polynomial function such that $f(x)=0$ has roots 3 and -2 , find a polynomial $g(x)$ such that $f(x) g(x)=x^{\wedge} 2+x-6$.
15.Find a polynomial function of degree at most 3 which has -1 and 2 i as zeros, and which passes through the point (1,-7).
