QUIZEN - Polynomial (9M02)

Learning Level 1
Q - Remembering (knowledge-based questions)
U - Understanding
(comprehension-based questions)

Learning Level 2
I-Applying (application-based questions)
Z - Analyzing (analysis-based questions)

Learning Level 3
E-Evaluating (evaluation-based questions)
N-Creating (creation-based questions)

Learning Level 1

1. Define a polynomial. Give an example of a polynomial of degree 3 .
2. What is the degree of the polynomial $2 x^{\wedge} 3+5 x^{\wedge} 2-3 x+1$?
3. What is a zero of a polynomial?
4. Find the zeroes of the polynomial $x^{\wedge} 2-4 x-21$.
5. State the Remainder Theorem for polynomials.

Learning Level 2

6. Given the polynomials $f(x)=2 x^{\wedge} 3-x^{\wedge} 2+3 x-5$ and $g(x)=x^{\wedge} 2+2 x-1$, find $f(x)+g(x)$.
7. Find the degree and leading coefficient of the polynomial $h(x)=4 x^{\wedge} 5-3 x^{\wedge} 3+2 x-1$.
8. If $(x-2)$ is a factor of the polynomial $f(x)=x^{\wedge} 3-3 x^{\wedge} 2+2 x+6$, find the other two zeroes of the polynomial.
9. Factorize the polynomial $p(x)=x^{\wedge} 3-4 x^{\wedge} 2+3 x+18$ completely.
10. Using the factor theorem, prove that $(x-1)$ is a factor of the polynomial $f(x)=x^{\wedge} 3-4 x^{\wedge} 2$ $+5 x-2$.

Learning Level 3

11. Evaluate the polynomial $f(x)=x^{\wedge} 3+2 x^{\wedge} 2-3 x+1$ for $x=2$.
12. Show that the polynomial $p(x)=x^{\wedge} 3+3 x^{\wedge} 2+3 x+1$ is always positive for all real values of x.
13. The sum of two zeroes of a cubic polynomial is 1 and their product is -6 . Find the polynomial.
14.Using the factor theorem, find all the zeroes of the polynomial $f(x)=x^{\wedge} 3-3 x^{\wedge} 2-4 x+12$.
14. Create a polynomial of degree 4 with integer coefficients that has $-2,1$, and 3 as zeroes.
