

QUIZEN – Polynomial (9M02)

Learning Level 1	Learning Level 2	Learning Level 3
Q - Remembering (knowledge-based	I - Applying (application-based	E - Evaluating (evaluation-based
questions)	questions)	questions)
U - Understanding	Z - Analyzing (analysis-based	N - Creating (creation-based
(comprehension-based questions)	questions)	questions)

Learning Level 1

- 1. Define a polynomial. Give an example of a polynomial of degree 3.
- 2. What is the degree of the polynomial $2x^3 + 5x^2 3x + 1$?
- 3. What is a zero of a polynomial?
- 4. Find the zeroes of the polynomial $x^2 4x 21$.
- 5. State the Remainder Theorem for polynomials.

Learning Level 2

- 6. Given the polynomials $f(x) = 2x^3 x^2 + 3x 5$ and $g(x) = x^2 + 2x 1$, find f(x) + g(x).
- 7. Find the degree and leading coefficient of the polynomial $h(x) = 4x^5 3x^3 + 2x 1$.
- 8. If (x 2) is a factor of the polynomial $f(x) = x^3 3x^2 + 2x + 6$, find the other two zeroes of the polynomial.
- 9. Factorize the polynomial $p(x) = x^3 4x^2 + 3x + 18$ completely.

10. Using the factor theorem, prove that (x - 1) is a factor of the polynomial $f(x) = x^3 - 4x^2$

+ 5x - 2.

Learning Level 3

- 11. Evaluate the polynomial $f(x) = x^3 + 2x^2 3x + 1$ for x = 2.
- 12. Show that the polynomial $p(x) = x^3 + 3x^2 + 3x + 1$ is always positive for all real values

of x.

13. The sum of two zeroes of a cubic polynomial is 1 and their product is -6. Find the

polynomial.

- 14. Using the factor theorem, find all the zeroes of the polynomial $f(x) = x^3 3x^2 4x + 12$.
- 15. Create a polynomial of degree 4 with integer coefficients that has -2, 1, and 3 as zeroes.