

QUIZEN – Vectors and Calculus(11P03)

Learning Level 1	Learning Level 2	Learning Level 3
Q - Remembering (knowledge-based	I - Applying (application-based	E - Evaluating (evaluation-based
questions)	questions)	questions)
U - Understanding	Z - Analyzing (analysis-based	N - Creating (creation-based
(comprehension-based questions)	questions)	questions)

Learning Level 1

- 1. Define the term "vector" and provide an example.
- 2. State the three operations that can be performed on vectors.
- 3. What is the magnitude of a vector? How is it calculated?
- 4. Explain the concept of a dot product between two vectors.
- 5. Differentiate between a scalar and a vector quantity.

Learning Level 2

- 6. Given two vectors A = 3i + 2j and B = 5i 4j, calculate the magnitude of the vector sum A + B.
- A particle moves along a curve described by the vector function r(t) = 2ti + (t^2 1)j. Find the velocity and acceleration vectors of the particle at time t = 2.
- A force F = (2t + 1)i (3t 2)j acts on an object. Find the work done by this force as the object moves from the point (1, -2) to (3, 4).
- Given the vector equation of a line as r = 2i + 3j + t(4i 2j), determine the direction vector and a point on the line.

- 10. The position vector of a particle moving in space is given by $r(t) = (2t^2)i + (3t 1)j + (t^3)$
 - 4t)k. Calculate the velocity and acceleration vectors of the particle at time t = 1.

Learning Level 3

- 11.A particle moves along a curve described by the vector function $r(t) = (t^2)i + (2t)j$. Find the unit tangent vector and the unit normal vector at time t = 3.
- 12.A vector field is given by $F = (2x + 3y)i + (4y^2 2x)j$. Find the curl and divergence of the vector field.
- 13.Consider the scalar function $f(x, y) = 2x^2 + 3xy 4y^2$. Determine the critical points and classify them as local maximum, local minimum, or saddle points.
- 14. Find the directional derivative of the scalar function $f(x, y, z) = 3x^2 + yz$ at the point (1,
 - -2, 3) in the direction of the vector v = 2i 3j + 6k.
- 15.A particle moves along a curve described by the vector function $r(t) = (t^2)i + (2t)j + ($

 $(3t^3 - 4t^2)k$. Find the curvature of the curve at time t = 1.