\\ \title{

QUIZEN - Vectors and Calculus(11P03)

}
 \title{

QUIZEN - Vectors and Calculus(11P03)

}

Learning Level 1
Q - Remembering (knowledge-based questions)
U - Understanding
(comprehension-based questions)

Learning Level 1	Learning Level 2	Learning Level 3
Q - Remembering (knowledge-based questions)	I - Applying (application-based questions)	E-Evaluating (evaluation-based questions)
U - Understanding (comprehension-based questions)	Z - Analyzing (analysis-based questions)	N-Creating (creation-based questions)

Learning Level 1

1. Define the term "vector" and provide an example.
2. State the three operations that can be performed on vectors.
3. What is the magnitude of a vector? How is it calculated?
4. Explain the concept of a dot product between two vectors.
5. Differentiate between a scalar and a vector quantity.

Learning Level 2

6. Given two vectors $A=3 i+2 j$ and $B=5 i-4 j$, calculate the magnitude of the vector sum A $+B$.
7. A particle moves along a curve described by the vector function $r(t)=2 t i+(t \wedge 2-1) j$. Find the velocity and acceleration vectors of the particle at time $t=2$.
8. A force $F=(2 t+1) i-(3 t-2) j$ acts on an object. Find the work done by this force as the object moves from the point $(1,-2)$ to $(3,4)$.
9. Given the vector equation of a line as $r=2 i+3 j+t(4 i-2 j)$, determine the direction vector and a point on the line.
10.The position vector of a particle moving in space is given by $r(t)=\left(2 t^{\wedge} 2\right) i+(3 t-1) j+\left(t^{\wedge} 3\right.$ $-4 t) k$. Calculate the velocity and acceleration vectors of the particle at time $t=1$.

Learning Level 3

11.A particle moves along a curve described by the vector function $r(t)=\left(t^{\wedge} 2\right) i+(2 t) j$. Find the unit tangent vector and the unit normal vector at time $t=3$.
12. A vector field is given by $F=(2 x+3 y) i+\left(4 y^{\wedge} 2-2 x\right) j$. Find the curl and divergence of the vector field.
13. Consider the scalar function $f(x, y)=2 x^{\wedge} 2+3 x y-4 y^{\wedge} 2$. Determine the critical points and classify them as local maximum, local minimum, or saddle points.
14. Find the directional derivative of the scalar function $f(x, y, z)=3 x^{\wedge} 2+y z$ at the point (1, $-2,3)$ in the direction of the vector $v=2 i-3 j+6 k$.
15.A particle moves along a curve described by the vector function $r(t)=\left(t^{\wedge} 2\right) i+(2 t) j+$ $\left(3 t^{\wedge} 3-4 t^{\wedge} 2\right) k$. Find the curvature of the curve at time $t=1$.

