QUIZEN - Motion in One Dimensions (11P02)

Learning Level 1
Q - Remembering (knowledge-based questions)
U - Understanding
(comprehension-based questions)

Learning Level 1

1. Define acceleration.
2. State the SI unit of acceleration.
3. What is the difference between uniform and non-uniform acceleration?
4. Explain the concept of instantaneous acceleration.
5. A car is moving with a constant acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. If its initial velocity is $10 \mathrm{~m} / \mathrm{s}$, what will be its velocity after 5 seconds?

Learning Level 2

6. A particle starts from rest and moves with a constant acceleration. If it covers a distance of 100 m in 5 seconds, calculate its acceleration.
7. A train is moving along a straight track with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. If its acceleration is $2 \mathrm{~m} / \mathrm{s}^{2}$, find the distance covered by the train in 8 seconds.
8. An object is thrown vertically upwards with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. Determine the maximum height reached by the object.
9. A car starts from rest and accelerates uniformly at a rate of $4 \mathrm{~m} / \mathrm{s}^{2}$ for a distance of 200 m . Calculate the final velocity of the car.
10.A body is moving in a straight line with a uniform acceleration. If its initial velocity is 5 m / s and final velocity is $25 \mathrm{~m} / \mathrm{s}$, and it covers a distance of 200 m , find the acceleration.

Learning Level 3

11.A particle is thrown vertically upwards. Plot a velocity-time graph for its motion.
12.A car is moving along a straight road with a constant acceleration. Sketch a displacement-time graph for its motion.
13.A ball is dropped from a certain height and falls freely under the influence of gravity. Derive an equation for the distance traveled by the ball in terms of time.
14.A cyclist starts from rest and accelerates at a constant rate. Derive an equation for the final velocity of the cyclist in terms of the initial velocity, acceleration, and time.
15.A stone is thrown vertically upwards with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. Derive an equation for the time taken by the stone to reach its maximum height.

Learning Level 2
Learning Level 3

