QUIZEN - Motion CCPO1

Learning Level 1
Q - Remembering (knowledge-based
questions)
U - Understanding
(comprehension-based questions)

Learning Level 1 :

1. Define distance, displacement, speed, and velocity.
2. State the difference between speed and velocity.
3. A car travels 100 m in 20 seconds. Calculate its speed.
4. What is the SI unit of velocity?
5. A train travels a distance of 10 km in 20 minutes. Calculate its speed in m / s.

Learning Level 2 :

1. A cyclist covers a distance of 30 km in 2 hours. Calculate his average speed.
2. A car travels at a constant speed of $50 \mathrm{~km} / \mathrm{h}$ for 4 hours. What distance does it cover?
3. A car is moving at a speed of $30 \mathrm{~m} / \mathrm{s}$. It comes to a halt after covering a distance of 200 m . Calculate the time taken by the car to come to rest.
4. Define acceleration. How is it related to velocity?
5. A car accelerates uniformly from rest to a speed of $60 \mathrm{~km} / \mathrm{h}$ in 10 seconds. Calculate its acceleration.
6. A particle is moving with uniform acceleration. Its initial velocity is $10 \mathrm{~m} / \mathrm{s}$ and its final velocity is $30 \mathrm{~m} / \mathrm{s}$. If it covers a distance of 100 m in the process, find the acceleration of the particle.
7. A car is moving with a velocity of $20 \mathrm{~m} / \mathrm{s}$. It accelerates uniformly and covers a distance of 100 m in 5 seconds. Find its final velocity.
8. A body is thrown vertically upwards with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. Calculate the maximum height attained by the body. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
9. A train starts from rest and accelerates uniformly at the rate of $2 \mathrm{~m} / \mathrm{s}^{2}$ for 100 seconds. It then moves with a constant speed for 300 seconds and finally decelerates uniformly at the rate of $4 \mathrm{~m} / \mathrm{s}^{2}$ to come to a stop. Calculate the total distance covered by the train.
10. A car moves at a speed of $30 \mathrm{~m} / \mathrm{s}$. It comes to a stop within a distance of 500 m . Find the retardation of the car.
