QUIZEN - Electrostatics CCWS12P01.3

Learning Level 1
Q - Remembering (knowledge-based
questions)
U - Understanding
(comprehension-based questions)

Learning Level 2
I - Applying (application-based questions)
Z - Analyzing (analysis-based questions)

Learning Level 3
E-Evaluating (evaluation-based questions)
N - Creating (creation-based questions)

Learning Level 1

1. Define electric flux and give its SI unit.
2. State Gauss's law in electrostatics.
3. What is the net electric flux through a closed surface that encloses a point charge q ?
4. Explain how to use Gauss's law to find the electric field due to a uniformly charged spherical shell.
5. A point charge $+q$ is located at the center of a closed Gaussian surface. What is the electric flux through the surface?

Learning Level 2

6. A point charge $+q$ is located at the center of a uniformly charged spherical shell of radius R and total charge Q. Use Gauss's law to find the electric field at a point inside the shell, at a distance r from the center $(r<R)$.
7. A conducting sphere of radius R has a total charge Q uniformly distributed on its surface. Use Gauss's law to find the electric field at a point inside the sphere, at a distance r from the center $(r<R)$.
8. A point charge q is placed at a distance d from a uniformly charged infinite plane. Use Gauss's law to find the electric field at a point on the plane.
9. A long charged cylinder of radius R has a uniform charge density ρ. Use Gauss's law to find the electric field at a point inside the cylinder, at a distance r from the axis $(r<R)$.
10.A point charge $+q$ is located at the center of a square of side a. The square lies in the $x y$ plane and is centered at the origin. Use Gauss's law to find the electric flux through each face of the square.

Learning Level 3

11. A hollow metal sphere of radius R has a total charge Q uniformly distributed on its surface. Use Gauss's law to find the electric field at a point outside the sphere, at a distance r from the center ($r>R$).
12. A long charged cylinder of radius R has a linear charge density λ that varies with distance r from the axis according to the equation $\lambda=\lambda 0(1-r / R)$, where $\lambda 0$ is a constant. Use Gauss's law to find the electric field at a point inside the cylinder, at a distance r from the axis ($r<R$).
13. A point charge $+q$ is located at a distance d from an infinite line of charge with linear charge density λ. Use Gauss's law to find the electric field at a point on the line.
14.A uniformly charged solid sphere of radius R has a total charge Q. Use Gauss's law to find the electric field at a point inside the sphere, at a distance r from the center ($r<R$).
15.A point charge $+q$ is located at the center of a closed Gaussian surface consisting of two concentric spheres of radii R1 and R2 (R1 < R2). Use Gauss's law to find the electric flux through the surface.
