QUIZEN - 10P01 - Electricity

Learning Level 1

Q - Remembering (knowledge-based questions)

U - Understanding (comprehensionbased questions)

Learning Level 2

I - Applying (application-based questions)

Z - Analyzing (analysis-based questions)

Learning Level 3
E-Evaluating (evaluation-based questions)

N-Creating (creation-based questions)

Learning Level 1

Q1: Define resistance and give its unit.
Q2: State Ohm's law and explain its significance.

Q3: What is the potential difference across a resistance of 10Ω if a current of 2 A flows through it?
Q4: What is the resistance of a wire if a current of 2 A flows through it when a potential difference of 4 V is applied across it?

Q5: What is the current through a 5Ω resistor if a potential difference of 20 V is applied across it?

Learning Level 2

Q1: Two resistors of resistance 4Ω and 6Ω are connected in series. Calculate the equivalent resistance of the combination.

Q2: Two resistors of resistance 3Ω and 9Ω are connected in parallel. Calculate the equivalent resistance of the combination.

Q3: State Kirchhoff's first law and second law. Explain how they are used in solving problems related to electrical circuits.

Q4: What is the power dissipated in a resistor of 5Ω when a current of 2 A flows through it?
Q5: Two resistors of resistance 10Ω and 20Ω are connected in series. Calculate the voltage drop across the 20Ω resistor when a potential difference of 120 V is applied across the combination.

Learning Level 3

Q1: Explain why the resistance of a conductor increases with its temperature.
Q2: A bulb rated at $100 \mathrm{~W}, 220 \mathrm{~V}$ is connected across a 110 V supply. What will be the power consumed by the bulb? Explain.

Q3: A current of 2 A flows through a 10Ω resistor for 5 minutes. Calculate the amount of electrical energy consumed by the resistor.

Q4: What is an electric fuse? How does it work?

Q5: Design a circuit using a 12 V battery and three resistors such that the current passing through the resistors is 0.5 A

